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ABSTRACT

Explicit attributes of convective storms within convection-allowing model (CAM) forecasts are routinely

used as surrogates for convective weather hazards. The ability of 3- and 1-km horizontal grid spacing CAM

forecasts to anticipate tornadoes using surrogates was examined for 497 severe weather events. Five diag-

nostics were used as tornado surrogates, including 0–1 kmabove ground level (AGL) updraft helicity (UH01),

2–5 km AGL UH (UH25), 0–3 km AGL UH (UH03), and 500m and 1 km AGL relative vorticity. Next-day

surrogate severe probability forecasts (SSPFs) for tornadoes were produced by thresholding the diagnostics

and smoothing the resulting binary field. SSPFs were verified against SPC tornado reports and NWS tornado

warnings. The 1-km SSPFs were more skillful than 3-km SSPFs across all diagnostics with statistically sig-

nificant differences in skill that were largest on themesoscale. UH01 outperformed the other four diagnostics,

in part because UH01 best represented regional variations in observed tornado report totals. Filtering

forecasts based on the significant tornado parameter benefited the 3-km SSPFs much more than the 1-km

SSPFs, with filtered 3-km SSPFs having similar skill to the filtered 1-km SSPFs. SSPFs verified with a com-

bination of tornado warnings and reports were more skillful than when verified against reports alone, indi-

cating that CAMs can better predict intense low-level rotation events than tornadoes. When verifying all

severe hazards, UH25 SSPFs were more skillful than UH01 SSPFs; UH01 and UH25 appear to be the most

useful pair for anticipating tornadoes and the combined severe threat on a given forecast day.

1. Introduction

The suite of operational numerical weather pre-

diction (NWP) guidance presently available to fore-

casters includes models configured with horizontal grid

spacing, Dx, fine enough to at least partially resolve

convective storms [e.g., the High-Resolution Rapid

Refresh (HRRR) model (Benjamin et al. 2016) or

the High-Resolution Ensemble Forecast (HREF) sys-

tem (Roberts et al. 2019), both run operationally at

the U.S. National Centers for Environmental Pre-

diction (NCEP) with Dx of ;3 km]. These convection-

allowing models (CAMs) yield improved predictions

of precipitation extremes compared to convection-

parameterizing NWP models (e.g., Mass et al. 2002;

Kain et al. 2006; Clark et al. 2009; Schwartz et al. 2009)

and provide explicit representations of severe con-

vective modes, such as supercells and mesoscale

convective systems (e.g., Done et al. 2004; Weisman

et al. 2008).

While CAMswith;3-kmDx are capable of producing
realistic convective structures (Weisman et al. 1997,

2008), severe weather hazards are not fully resolved

and must be identified indirectly through surrogate di-

agnostics. Diagnostic fields related to the presence and

intensity of mesocyclones have proved especially valu-

able [e.g., updraft helicity (UH), Kain et al. 2008, 2010;

Sobash et al. 2011; Naylor et al. 2012], since supercells

are prolific severe weather producers in the United

States (Gallus et al. 2008; Duda and Gallus 2010, Smith

et al. 2012). Extreme values of UH are used to identify

supercells in CAMs and have been used to produce next-

day (i.e., forecast lead times . 12h) guidance (e.g.,

Sobash et al. 2011, 2016) for the combined threat from

all severe hazards [i.e., hail $ 1 in., wind gusts $ 50kt

(1 kt ’ 0.51m s21), and/or tornadoes]. Guidance for

individual hazards has also been explored, such as using

10-m wind speed and vertically integrated graupel di-

agnostics to predict wind and hail (e.g., Clark et al. 2012;

Hepper et al. 2016); UH with calibrated NCEP Short-

Range Ensemble Forecast (SREF) environmental in-

formation to produce hail, wind, and tornado forecastsCorresponding author: Dr. Ryan A. Sobash, sobash@ucar.edu
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(Jirak et al. 2014); machine-learning and hail models

within CAMs to predict severe hail (e.g., Gagne et al.

2017; Adams-Selin et al. 2019); UH to identify tornadoes

(e.g., Clark et al. 2013, Sobash et al. 2016); and com-

bining UH with the significant tornado parameter (STP;

Thompson et al. 2003) and climatological tornado fre-

quencies, to produce tornado guidance (e.g., Gallo et al.

2016, 2018, 2019).

These studies have noted deficiencies of CAMs with

3–4-kmDx at predicting the physical processes related to
convective hazards. Hepper et al. (2016) described two

cases where convective winds were underforecast in

their 4-km forecasts, suggesting the issue was due to the

inability to resolve processes related to the production

of near-surface convective gusts. Additionally, in their

tornado forecasts, Gallo et al. (2016, 2018, 2019) used

STP to reduce overforecasting when using UH alone,

commenting that 3–4-km CAMs were unable to repre-

sent processes leading to intense low-level rotation. A

similar overforecasting issue was present in the tornado

forecasts of Jirak et al. (2014). Errant storm motions

have also been noted in 3–4-km forecasts of supercells

(VandenBerg et al. 2014) and MCSs (Schwartz et al.

2017). Similar deficiencies have also been identified in

idealized studies using simplified cloud models, with

mesocyclone cycling (Adlerman andDroegemeier 2002),

low-level vorticity intensification (Potvin and Flora 2015),

and updraft and downdraft strength (e.g., Bryan et al.

2003; Bryan and Morrison 2012) being poorly handled at

3–4-km Dx, but better represented at Dx # 1km.

Even though moving toward finer Dx improves storm-

scale processes in idealized simulations, studies of next-

day CAM forecasts have documented minimal benefit

to moving toward Dx 5 1km for forecasts of pre-

cipitation and severe weather (e.g., Kain et al. 2008;

Schwartz et al. 2009; Clark et al. 2012; Johnson et al.

2013; Loken et al. 2017). Among the studies that focused

on severe weather phenomena, Kain et al. (2008) de-

termined that while 2-km forecasts possessed more de-

tailed structures than 4-km forecasts, the forecasts were

qualitatively similar in their placement of storms on

a given day, and the climatology of UH objects were

similar after adjusting for differences in the scaling of

the UH diagnostics. Clark et al. (2012) arrived at similar

conclusions, with participants in the 2010 NOAA Haz-

ardous Weather Testbed (HWT) Spring Experiment

subjectively rating 1-km forecasts similarly to 4-km

forecasts for a majority of events. Loken et al. (2017)

quantitatively evaluated;60 next-day CAM forecasts

of severe weather from the 2010 and 2011 HWT

Spring Experiments and determined that, while 1-km

forecasts were slightly superior to 4-km forecasts, the

results were not statistically significant.

The aforementioned studies have largely focused on

the placement of rotating storms in CAM output, which

appears to be relatively insensitive to reductions in Dx
below 4km, at least within springtime convective envi-

ronments. We hypothesize that the development of

near-surface rotation (e.g., associated with low-level

mesocyclones) will be better captured as Dx decreases,

leading to diagnostics that can better discriminate be-

tween tornadic and nontornadic events. To investigate

the impact of reducing Dx to 1 km on next-day tornado

forecasts, we extend the work of Sobash et al. (2016) by

verifying 1-km forecasts using diagnostics more closely

tied to the development of low-level rotation within

supercells. We also expand on Sobash et al. (2016) by 1)

using 497 deterministic forecasts of specific events oc-

curring between 2010 and 2017, rather than 91 ensemble

forecasts of consecutive events fromMay to July 2015, to

provide a statistically robust sample of diverse events

across a range of seasons and environments, 2) com-

bining the diagnostics with environmental parameters

(i.e., STP), similar to the methods used by Gallo et al.

(2016, 2018), and 3) supplementing tornado reports

with tornado warnings as a novel verification dataset to

capture low-level rotation events that did not produce

tornadoes.

2. Methods

a. Case selection

A total of 497 events were simulated with both 3- and

1-km Dx on days with severe thunderstorms east of the

Rocky Mountains. Cases were selected from the Storm

Prediction Center’s (SPC’s) severe thunderstorm event

archive, which includes events meeting certain criteria,

including the total number of severe weather reports,

monetary losses, and fatalities.1 Forecasts were pro-

duced for all events in the SPC archive occurring be-

tween 15 March and 15 July (the ‘‘warm season’’) each

year between 2011 and 2016 (inclusive). We also pro-

duced forecasts between 15 October and 14 March (the

‘‘cool season’’) for the 2010–11, 2011–12, . . . , 2015–16,

and 2016–17 periods, when severe weather occurred less

frequently.

The criteria for including cool-season events in the

SPC’s archive was relaxed, and some cool-season events

had very few storm reports over localized areas that we

did not simulate.We chose to neglect cool-season events

with ,20 storm reports, and included nearly all events

1 SPC event archive and selection criteria available at http://

www.spc.noaa.gov/exper/archive/events/.
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that produced .100 storm reports (45 events; 9 March

2013 was the sole exception). The remaining cool-season

events generated between 20 and 100 storm reports and

were selected to capture events across a diversity of

months and regions. These criteria resulted in forecasts

of 419 warm-season and 78 cool-season events (Table 1),

with forecast initializations ranging from 0000 UTC

24 October 2010 through 0000 UTC 30March 2017. The

case selection strategy neglected events between 16 July

and 14 October. These events were not emphasized due

to many being weakly forced and occurring when CAM

severe weather predictability is reduced (Sobash and

Kain 2017). Avoiding these events also mitigated issues

associated with landfalling tropical cyclones. The case

selection strategy also neglected the inclusion of ‘‘false

alarm’’ events, that is, forecast severe weather events

that were not observed, although, an assessment of the

ability of 3- and 1-km forecasts to discriminate between

tornadic and nontornadic episodes should be main-

tained, due to the existence of many null tornado events.

b. Model configurations and diagnostics

Independent forecasts with 3- and 1-km Dx were

produced with version 3.6.1 of the Advanced Research

version of the Weather Research and Forecasting

(WRF) Model (WRF-ARW; Skamarock et al. 2008;

Powers et al. 2017). Both sets of forecasts were initial-

ized by interpolating 0000 UTC 0.58 Global Forecast

System (GFS) analyses onto the 3- and 1-km domains

and used 3-hourly GFS forecasts as lateral boundary

conditions. Although 0.258 GFS grids became available

in 2015, 0.58GFS fields were used for all 497 events. All

forecasts used a computational domain spanning the

entire continental United States (CONUS) (Fig. 1), used

identical physical parameterizations (Table 2), and had

40 vertical levels and a 50-hPa model top. The time step

was set to 4Dx for both sets of forecasts (i.e., 4 s for the

1-km forecasts and 12 s for the 3-km forecasts). The

3-km forecasts using the same time step (i.e., 4 s) were

less skillful than the 3-km, 12-s time step forecasts, due

to increased WRF sixth-order diffusion (Knievel et al.

2007). The 3-km, 4-s time step forecasts with reduced

diffusion produced results nearly identical results to the

3-km, 12-s time step forecasts, thus the skill differences

between the 1-km, 4-s time step forecasts and 3-km, 12-s

time step forecasts were attributed solely to Dx, and not

time step differences.

Five diagnostics related to rotation were computed:

2–5 km AGL updraft helicity (UH25), 0–3 km AGL

updraft helicity (UH03), 0–1km AGL updraft helicity

TABLE 1. Dates of 497 WRF forecasts and number of events per month (italics). Forecasts were initialized at 0000 UTC on the date

shown. All 419 warm-season events (15Mar–15 Jul) in the SPC storm event archive between 2010 and 2017 were simulated, in addition to

78 selected cool-season (15 Oct–14 Mar) events.

No. of

events

per month 2010–11 2011–12 2012–13 2013–14 2014–15 2015–16 2016–17

Oct 8 24–27 17 31 30, 31

Nov 17 16, 22,

29, 30

7, 8, 14, 16 17 16, 23 11, 16, 17 28–30

Dec 11 31 22 17, 19, 20, 25 21 23 23, 27 17

Jan 13 25 17, 22, 25 29, 30 11 3 21 2, 20–22
Feb 20 1, 24,

27, 28

18, 24, 28, 29 10, 18 20, 21 15, 16, 23, 24 7, 19, 25, 28

Mar 54 5, 8, 9, 10,

22, 23, 26,

27, 29, 31

2, 15, 18–21,
23, 24, 28,

29, 31

18, 23, 24,

29–31
16, 26–28 24, 25, 31 8, 15, 17, 18,

23, 24, 27,

30, 31

1, 6, 9, 21, 23,

24, 26–30

Apr 82 3, 4,

8–10,
11, 14–16,

18–28, 30

1–3, 5,

7, 9, 13,

14, 15, 21,

26, 28, 30

1, 7, 9–11,

14, 17–19,
29

2–4, 6, 7,

12–14, 24,
25, 27–29

2, 3, 8, 9,

16–20, 22,
24–27

1, 6, 7, 10,

11, 15, 24,

26–29

May 101 9–12, 21–27,

29, 30

1–6, 9, 10,

19, 25, 27–31

2, 8–10,

13, 15–23,
27–31

7–11, 13,

14, 20–22,
25–27, 30

5–11, 15,

16, 19,

23–28,

30, 31

1–5, 7–12,

16, 17, 21,

22, 24–29, 31

Jun 123 1, 4–26 1, 4, 6, 7,

11, 13, 14,

22–24,

29, 30

2, 5, 6,

10, 12, 13,

15–22,

24–29

1, 3–11,

14, 16–22,
24–30

1, 4, 5, 7–10,

12, 14,

17–30

2, 5, 8, 10,

13–17,
19–26, 28, 29

Jul 68 1–6, 10–13 1–8, 10, 12, 15 1–4,
7–12, 15

2, 3, 5–10,
13–15

1–3, 5–10,
12–15

4–15
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(UH01), 1 km AGL vertical vorticity (RVORT1), and

500m AGL vertical vorticity (RVORT0.5) (Table 3).

While UH25, UH03, and RVORT1were used in Sobash

et al. (2016), UH01 andRVORT0.5 diagnostics have not

been used in previous CAM verification studies. Gen-

erally, UH is defined as the integral of updraft speed

multiplied by vertical vorticity between two levels (Kain

et al. 2008), which is approximated inWRFby numerical

integration, using updraft speed and vertical vorticity

computed on model levels between 2 and 5km (UH25),

between 0 and 3km (UH03), and between 0 and 1km

(UH01) AGL. RVORT1 and RVORT0.5 were com-

puted by using the vertical vorticity within theWRFUH

computation, interpolated to 1 km and 500m AGL. A

nine-point smoother was applied after each time step to

the UH25, UH03, and UH01 fields, but not to the

RVORT1 and RVORT0.5 fields, since these fields used

the vorticity fields computed as a part of the UH com-

putation, prior to smoothing. Diagnostics were com-

puted each time step duringWRF integration and stored

as hourly maximum values as in Kain et al. (2010). Since

the maximum value of each diagnostic was stored each

hour, and each field was initialized with zeros, only

positive magnitudes of each diagnostic, representative

of cyclonic rotation, were preserved.

c. Producing tornado SSPFs

The 3- and 1-km forecasts were evaluated by pro-

ducing surrogate severe weather reports (SSRs). SSRs

are designed to be the model counterpart to observed

severe reports (OSRs), representing the anticipated

locations of OSRs based on extremes in CAM di-

agnostics such as UH25 (e.g., Sobash et al. 2011, 2016;

Gallo et al. 2016; Loken et al. 2017). To produce SSRs

for each forecast for a particular diagnostic, the two-

dimensional grid of maximum gridpoint diagnostic

values was computed using model output from forecast

hours 12–36 (1200 UTC–1200 UTC). A threshold was

applied to convert the 24-h maximum field into a binary

grid of ones and zeroes; these are the locations of the

native model grid SSRs. The native grid SSRs were

upscaled to an 80-km grid2 of SSRs, by flagging an 80-km

grid box if at least one 3- or 1-km grid SSR occurred

within the 80-km grid box. For the rest of this work, each

forecast’s 80-km grid SSRs are used. The usage of the

maximum diagnostic value over the 24-h forecast period

eliminates most timing errors, focusing only on where 3-

and 1-km forecasts predict severe weather on a given day,

determined by the SSRs.

The diagnostics used here, which all incorporate ver-

tical vorticity, exhibit large sensitivities toDx (Adlerman

and Droegemeier 2002), preventing the usage of a fixed

threshold between the 3- and 1-km forecasts. To eq-

uitably compare the 3- and 1-km forecasts, thresholds

were chosen so the total number of SSRs, when summed

FIG. 1. The WRF domain for 1- and 3-km forecasts. The 80-km grid boxes used for verifi-

cation are shaded. The 1-km domain consisted of exactly 9 times the number of grid points

(4743 3 2958) as the 3-km domain (1581 3 986).

2 An 80-km grid was chosen to be consistent with SPC’s proba-

bilistic outlooks, which forecast event occurrence within 25 mi of a

point, as well as reducing the impact of under- or over-reporting

biases of severe storm reports (e.g., Weiss and Vescio 1998). The

specific grid used is the NCEP 211 grid, which has a grid-spacing of

80 km at 358N latitude.
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across all 497 events, was equal to the total number of

OSRs (i.e., 3096 OSRs and SSRs, an SSR bias of 1;

Table 3). Additional thresholds were also chosen at

SSR biases between 2.0 and 0.25, in increments of 0.25,

producing total SSR counts between 6192 and 774, in

increments of;800 (Table 3). Each 24-h SSR field was

smoothed using an isotropic Gaussian filter (Sobash

et al. 2011; Hitchens et al. 2013) with standard de-

viation s between 20 and 300 km, in 20-km increments.

After smoothing, the binary SSR field values fall be-

tween 0 and 1 and can be interpreted as a probability

(Theis et al. 2005); this product is henceforth referred

to as a surrogate severe probability forecast (SSPF) for

tornadoes.

d. Verification

SSPFs were verified using National Centers for En-

vironmental Information Storm Data tornado reports,

contained within the SPC storm report database. Ad-

ditionally, NWS tornado warnings were used for verifi-

cation since the rotation diagnostics should be more

skillful as surrogates for intense low-level rotation

than for tornadoes. The start location of each tornado

report was mapped to an 80-km grid and aggregated

over each 24-h forecast period, to produce an OSR

field analogous to the SSR field. Tornado warnings

were retrieved from the Iowa Environmental Mesonet

website (https://mesonet.agron.iastate.edu) and, like

the reports, were mapped to an 80-km grid using

the centroid of each warning rather than the report

start location. If the tornado warning was valid for

any portion of the SSPF period, it was included in

the verification data. Tornado warnings and reports

were then merged to produce a gridded 80-km data-

set of combined tornado report and tornado warning

locations.

SSRs were verified withOSRs using contingency table

metrics such as the probability of detection (POD) and

false alarm ratio (FAR). POD and the success ratio

(SR; 12 FAR) for each SSR threshold were plotted on a

performance diagram (Roebber 2009) to visually assess

forecast quality. SSPFs were verified with the fractions

skill score (FSS; Roberts and Lean 2008), area under the

relative operating characteristic (ROC) curve (AUC;

Mason 1982; Marzban 2004), and attributes diagrams,

which assess forecast reliability (Wilks 2011). For each

FSS curve, the scale where the FSS exceeded 0.51 fo/2,

where fo is the sample climatology (0.008), was com-

puted via interpolation between length scales. This scale

represents the minimum useful scale of the forecast

(lmin; Roberts and Lean 2008) and is defined as the

FSS of a uniform forecast of the climatological event

TABLE 3. Thresholds for each diagnostic that produce SSR biases (number of SSRs/number of OSRs) between 2.0 and 0.25. Percentiles

listed are for distributions that included all 80-km model grid points within the verification region, including zeros, for forecast hours

between 13 and 36. Bold numbers indicate the thresholds that produce an SSR bias of 1.

Bias 2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25

No. of SSRs 6192 5418 4644 3870 3096 2322 1548 774

Percentile 99.794 99.820 99.845 99.871 99.897 99.922 99.948 99.967

3-km UH25 (m2 s22) 127.3 135.55 145.25 156.65 170.95 191.8 222.3 275.45

3-km UH03 (m2 s22) 78.6 83.25 89.0 96.15 105.0 116.8 135.75 169.85

3-km UH01 (m2 s22) 10.937 11.55 12.28 13.197 14.362 16.002 18.299 22.71

3-km RVORT1 (31023 s21) 9.176 9.443 9.745 10.107 10.555 11.11 11.943 13.362

3-km RVORT0.5 (31023 s21) 8.193 8.451 8.734 9.06 9.473 9.999 10.765 12.332

1-km UH25 (m2 s22) 670.1 705.9 746.9 794.4 861.0 948.1 1079.0 1307.1

1-km UH03 (m2 s22) 423.0 449.0 480.2 516.1 566.2 630.6 722.4 917.5

1-km UH01 (m2 s22) 76.02 80.36 85.37 91.88 100.03 111.76 128.73 162.6

1-km RVORT1 (31023 s21) 25.4 26.14 26.975 28.095 29.435 30.99 33.27 37.58

1-km RVORT0.5 (31023 s21) 25.425 26.19 27.035 28.095 29.5 31.295 33.765 38.77

TABLE 2. WRF parameterization schemes used in both 3- and 1-km forecasts.

Parameterization WRF option Reference

Cumulus None

Microphysics Thompson Thompson et al. (2008)

Planetary boundary layer Mellor–Yemada–Janjić (MYJ) Mellor and Yamada (1982); Janjić

(1994, 2002)

Longwave and shortwave radiation Rapid Radiative Transfer Model for Global

Climate Models (RRTMG) with

ozone and aerosol climatologies

Mlawer et al. (1997); Iacono et al. (2008);

Tegen et al. (1997)

Land surface model Noah Chen and Dudhia (2001)
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frequency fo. ROC curves were constructed by com-

puting POD and probability of false detection (POFD)

for probability thresholds between 0% and 100% in 5%

increments, as well as at 1% and 2%. The ROC AUC

was then computed with the trapezoidal approximation.

All metrics were computed using CONUS land points

east of 1058W (i.e., east of the Rocky Mountains). SSRs

and OSRs outside of the verification domain were re-

moved prior to producing the SSPFs, to avoid the issue

of SSRs outside the verification domain impacting in-

terior verification points after smoothing.

Statistical significance of the FSS and ROC AUCs

were determined by a bootstrap technique applied to

differences between pairs of experiments (e.g., Wolff

et al. 2014). Specifically, for a particular forecast pair (e.g.,

1-km UH01 SSPFs and 3-km UH01 SSPFs) distributions

of FSS or ROC AUC differences were constructed by

randomly sampling the 497 cases, with replacement, and

computing the FSS or ROC AUC differences using

those dates for each set of forecasts. This procedure

was repeated 10 000 times to estimate bounds of 99%

confidence intervals (CIs). Using a one-tailed hypoth-

esis test, if zero was not included within bounds of the

99% CIs, then differences were statistically significant

at the 99% level or higher. The permutation test outlined

in Hamill (1999) was also used, producing similar results

to the paired difference test.

3. Verification of tornado SSPFs at 3- and 1-km Dx

Verification of the 3- and 1-km binary SSRs and

probabilistic SSPFs is presented on the 80-km grid scale

for all SSR threshold values for each diagnostic to ex-

amine the impact of SSR bias on forecast verification

using contingency table basedmetrics. SSPF evaluations

will be restricted to SSPFs produced with an SSR bias of

1 (Table 3) using probabilistic metrics (e.g., FSS, ROC

AUC, attributes diagram). The FSS evaluates the scale

dependence of skill up to smoothing length scales of

;300 km,3 covering most of the mesoscale.

a. Verification of SSRs and SSPFs with tornado
reports

Evidence of differences between the 3- and 1-km

forecasts existed on the 80-km grid scale, when verify-

ing SSRs against tornado OSRs. For a given threshold,

the accuracy of the SSRs increased as the grid spacing

was reduced and the depth of UH integration was po-

sitioned closer to the surface, in both the 1- and 3-km

forecasts, with the decreased grid spacing having a

larger impact on forecast skill than the change in UH

integration depth (Fig. 2). Overall, the 1-km UH01 and

UH03 SSRs produced the largest PODs and smallest

FARs among the forecasts, resulting in the largest CSIs.

(Fig. 2). The 1-km UH03 SSRs were more accurate

than the 1-km UH01 SSRs at large UH thresholds, al-

though the number of SSRs is quite small (;500–1000).

Among the 3-km forecasts, the UH01 SSRs were the

most accurate, producing the largest CSIs, while the 3-km

UH25 SSRs had the lowest CSIs among all SSPFs. Of the

8 thresholds used to produce SSRs in each of the fore-

casts, theCSI increased as theUH thresholdwas reduced,

with the maximum CSI produced for the smallest UH

threshold (i.e., an SSR bias of 2.0), although CSI differ-

ences were generally small for SSR biases between 1.0

and 2.0. CSI values increased slightly for biases greater

than 2.0, then decreased (not shown). The improvement

of CSI for biases greater than one is a result of the sen-

sitivity of CSI to bias, with overforecasting, or ‘‘hedging’’

being rewarded, with this effect being particularly acute

in the verification of rare events, such as tornadoes

(Baldwin and Kain 2006).

Even though thresholds were selected so that UH25

andUH01 produced the same number of SSRs (Table 3),

differences in regional coverage of SSRs contributed to

differences in forecast accuracy. UH25 SSRs were

overpredicted across the central United States and

underpredicted across the eastern United States, when

compared to tornado OSRs (Fig. 3a). In both the 3- and

1-km forecasts, UH01 better identified the locations of

tornado OSRs regionally, with a reduction in SSRs over

the central United States and an increase within the east

and southeast United States, in better correspondence

with tornado OSRs (Fig. 3b). Tornadic environments in

the east and southeast United States often differ from

those in the central United States, with eastern U.S.

tornadoes more likely to occur within high-shear, low-

instability regimes (Guyer and Dean 2010; Dean and

Schneider 2008). Supercells in these environments are

often spatially compact (Davis and Parker 2014), with

reduced UH25 magnitudes (Guyer and Jirak 2014).

While regional or environmental varying thresholds

could improve the performance of UH25 tornado SSPFs

in the southeastern United States (Sobash and Kain

2017), it appears that UH01 can better discriminate

between tornadoes in these two regimes.

Among the three diagnostics that were used to iden-

tify rotation , 1km AGL (i.e., RVORT1, RVORT0.5,

and UH01), UH01 SSRs were more closely associated

3 This length scale is the standard deviation of the Gaussian

s used to smooth the forecasts, differing from the traditional ‘‘box

width’’ neighborhood presented in Roberts and Lean (2008). In

general, the corresponding box width neighborhood will be larger

than the Gaussian standard deviation.
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with tornado OSRs than RVORT1 or RVORT0.5 and

had larger CSI values at both 1- and 3-km Dx across all

thresholds (Fig. 4).While RVORT1 andRVORT0.5 are

components of the UH01 computation, and due to this

are strongly correlated with UH01, UH01 appears to

have an advantage in that it identifies model grid points

where intense vertical vorticity is collocated with an

updraft, such as within a mesocyclone, rather than only

identifying the presence of intense vertical vorticity. The

usage of a nine-point smoother when computing UH01,

and not when computing RVORT1 or RVORT0.5,

may also contribute to some skill differences. Between

RVORT1 and RVORT0.5, RVORT0.5 was less skillful

than RVORT1 for all thresholds. The reduction in skill

as the vertical vorticity level decreased from 1km to

500m AGL is potentially due to RVORT1 being more

reflective of the presence of a low-level mesocyclone,

while large RVORT0.5 magnitudes may arise due to

horizontal shear along surface boundaries, unrelated to

the presence of rotation aloft.

Differences between the 1- and 3-km SSRs were also

present on larger spatial scales, when smoothed into

SSPFs and compared to the smoothed OSR field with

the FSS. Overall, FSS differences between the SSPFs

increased with spatial scale, with differences due to grid

spacing and diagnostic choice being maximized on the

mesoscale (Fig. 5). The FSS magnitudes for the 80-km

gridscale SSPFs (i.e., those produced with minimal

smoothing) were not useful (FSSs , 0.5), with small

differences among the SSPFs, corroborating the grid-

scale SSR evaluation. The spatial scale that produced

skillful forecasts (lmin) was smallest for the 1-km SSPFs

and largest for the 3-km SSPFs (Table 4). For example,

lmin for the 1-km UH01 SSPFs was 100 km, whereas the

3-km UH25, UH03, and UH01 SSPFs had lmin values of

365, 195, and 140km, respectively (Table 4). The 1-km

UH01 SSPFs were most skillful at all scales, with the

combined effects of the low-level mesocyclone diag-

nostic and finer resolution combining to produce the

largest increases in forecast skill over the 3-km UH25

SSPFs (Fig. 5). FSS differences between forecasts using

the same grid spacing (e.g., 1-km UH01 and 1-km

UH25) or the same diagnostic (e.g., 1-km UH01 and

3-km UH01), were all statistically significant at the 99%

level at all length scales. As in the gridscale results, the

RVORT0.5 and RVORT1 SSPFs had inferior FSS to

the UH01 SSPFs at any scale, with the disparity in skill

increasing with scale (not shown). The RVORT1 and

FIG. 2. Performance diagram for the 3-km UH25, 3-km UH03, 3-km UH01, 1-km UH25,

1-km UH03, and 1-km UH01 SSRs. The POD and SR for the eight bias-determined UH

thresholds (Table 4) are marked by a white dot within each line, with the lowest UH

threshold (bias of 2.0) producing the largest POD. Solid gray lines are lines of constant CSI,

while dashed gray lines are lines of constant bias.
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RVORT0.5 SSPFs will not be evaluated further, since

these diagnostics do not appear to provide any added

value over UH01.

Two independent aspects of probabilistic forecast

skill, reliability, and resolution, were evaluated for the

UH01 and UH25 SSPFs (the UH03 SSPFs generally

produced results falling between the UH25 and UH01

SSPFs; Fig. 6). All SSPFs produced overconfident

probability values at small length scales (Fig. 6a). Pro-

viding smoothed SSPF guidance was necessary to pro-

duce reliable probabilities for all forecast sets, although

the 3-kmUH25 SSPFs were not reliable even with fairly

aggressive smoothing (Fig. 6d). For SSPF probabili-

ties , 40% the 1-km UH01 SSPFs tended to be most re-

liable and required less smoothing to achieve a given level

of reliability, retaining themost sharpness in the forecasts.

For SSPF probabilities . 40%, the observed frequencies

were often sensitive to the small sample sizes, especially

when SSPFs were smoothed using s. 160 km, although

the 1-km UH01 SSPFs were still the most reliable.

As for forecast resolution, the ROC AUC was largest

for the 1-km UH01 SSPFs and smallest for the 3-km

UH25 SSPFs, with differences $ 0.1 on scales . 80km

(Fig. 7). Similar to the gridscale and FSS results, ROC

AUCs increased as grid spacing was decreased and as the

UH diagnostic incorporated model levels closer to the

surface. The 1-km UH01 SSPFs had ROC AUCs $ 0.8

for length scales . 140 km, indicating good ability to

discriminate between events and nonevents, while the

3-km UH25 SSPFs had ROC AUCs ;0.7 for the same

length scales (Fig. 7). ROCAUCs were reduced to near

0.5 for all forecasts at the 80-km grid scale, since the

SSPFs were minimally smoothed and only consisted of

0% or 100% probability values.

The usage of low-level UH diagnostics (e.g., UH01)

and the finer grid spacing within the 1-km forecasts both

resulted in improvements to forecast reliability and reso-

lution. Improvements in forecast resolution are often more

difficult to achieve, since they are fundamentally re-

lated to the underlying value of the forecast system

FIG. 3. Difference between total number of SSRs and tornadoOSRs at each 80-km grid box accumulated over all

497 forecasts for the (a) 3-km UH25, (b) 3-km UH01, (c) 1-km UH25, and (d) 1-km UH01 diagnostics using the

threshold for each field that produced a bias of 1 (Table 4).
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(rather than reliability, which can be calibrated with-

out changing the underlying components or configu-

ration of the system). Here, the choice of diagnostic

and grid spacing appear to both be factors in increas-

ing forecast resolution, improving the underlying ability

of CAMs to discriminate between tornadic and non-

tornadic events.

b. Verification of SSRs and SSPFs with tornado
warnings

In this section, we use the most skillful tornado

forecasts from the previous section as a baseline (i.e.,

1-km UH01 SSPFs) and evaluate differences in skill

when verifying against tornado reports and warnings,

rather than tornado reports alone. The inclusion of

tornado warnings to the tornado OSRs approximately

doubled the total number of ‘‘hit’’ 80-km grid boxes

(i.e., 6420 versus 3096 OSRs), indicating a significant

number of false alarm tornado warnings. This is not

unexpected, considering NWS tornado warnings typi-

cally have FARs of ;0.7 (Brooks and Correia 2018).

Even though many tornado warnings did not verify,

they still provide valuable information about the exis-

tence of radar-indicated rotation of sufficient strength

to issue a tornado warning, assuming sufficient radar

coverage.

The larger number of OSRs when verifying with tor-

nado reports and warnings required that the UH01

threshold be decreased to 75m2 s22, producing 6420

SSRs, a bias of 1. The 1-km UH01 SSPFs corresponded

better with the locations of tornado reports and warn-

ings combined, compared to reports alone, reflected by

larger FSSs across all scales (Fig. 8a). In fact, the 1-km

UH01 SSPFs verified with both reports and warnings

had the largest FSSs among all SSPFs examined in this

work, with FSSs . 0.7 for length scales . 200 km and

lmin of ;70km. The improvement in FSS when com-

bining tornado reports with warnings with the 1-km

UH01 SSPFs was similar for the 3-km UH01, 3-km

UH25, and 1-km UH25 SSPFs; verifying with reports

and warnings for all forecasts increased FSS by ;0.1

across most scales (not shown). The larger FSS

values were also associated with larger AUCs, in-

dicating that the differences in skill were in part a

result of better discrimination between events and

nonevents and not just better calibration (Fig. 8b).

The FSS and ROC AUC differences between fore-

casts verified with reports, or reports and warnings,

were statistically significant at the 99% confidence

level. Given the higher FSSs and larger AUCs for

forecasts verified with tornado warnings, it is safe

to say that UH01 is a more skillful proxy for the

FIG. 4. As in Fig. 2, but for 3-kmUH01, 3-kmRVORT1, 3-kmRVORT0.5, 1-kmUH01, 1-km

RVORT1, and 1-km RVORT0.5 SSRs.
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locations where intense low-level rotation will occur,

and tornado warnings will be issued on a given

forecast day, rather than the locations where tornado

reports will occur.

c. Verification of filtered SSRs and SSPFs

Previous work has applied the STP as a filter that

improved the skill of CAM-based tornado forecasts

by removing convection in environments not condu-

cive for tornadoes (i.e., those with high LCLs or weak

low-level shear; Thompson et al. 2012; Gallo et al.

2016, 2018). To test if removing SSRs in environments

of low STP improved forecast skill, SSPFs were gen-

erated from a subset of the SSRs that occurred in

environments where the STP was larger than 1.0.

Specifically, at each hour, the representative STP

within each 80-km grid box was computed by aver-

aging the 3- or 1-km gridpoint STP values composing

the grid box. Each hour’s binary SSRs were removed

where the average STP within the 80-km grid box

was ,1.0 in the previous hour. STP thresholds of 1–4

were examined, and FSS values were maximized using

an STP threshold of 1 in both the 1- and 3-km SSPFs.

The filtered SSRs were smoothed using the same

procedure to create the original SSPFs. As in the

section 3b, we examine only the 3- and 1-km UH25 and

UH01 SSPFs.

Using the UH thresholds in Table 3 that produced an

SSR bias of 1 underforecast the number of OSRs after

removing SSRs where STP , 1.0. To compensate, the

UH threshold was decreased to produce an SSR bias of

1 among the four sets of SSPFs that were filtered, that is,

the UH thresholds used to produce the filtered 3-km

UH25, 1-km UH25, 3-km UH01, and 1-km UH01 SSRs

were 110.6, 631.3, 9.87, and 69.03m2 s22, respectively.

Filtering resulted in statistically significant improvements

in FSS and AUC for the 3-km UH25, 3-km UH01, and

1-kmUH25 SSPFs (Fig. 9). FSS andAUC differences for

FIG. 5. Fractions skill score as a function of smoothing length scale s (km) for the 3-km

UH25, 3-km UH03, 3-km UH01, 1-km UH25, 1-km UH03, and 1-km UH01 tornado SSPFs.

The black horizontal line at FSS 5 0.5 1 fo/2, where fo is the sample climatology (0.008),

indicates the minimum useful scale.

TABLE 4. Minimum useful scale lmin (km) among the various

forecasts and verification datasets used in this work (ALL repre-

sents verification against hail, wind, and tornado reports, while

TOR represents verification with tornado reports only).

Verification

dataset

Minimum useful

scale lmin (km)

1-km UH25 ALL 40

1-km UH01 ALL 45

3-km UH25 ALL 45

3-km UH01 ALL 50

1-km UH01 TOR 100

1-km UH03 TOR 110

1-km RVORT1 TOR 120

1-km RVORT0.5 TOR 135

3-km UH01 TOR 140

1-km UH25 TOR 150

3-km RVORT1 TOR 155

3-km RVORT0.5 TOR 170

3-km UH03 TOR 195

3-km UH25 TOR 365
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the 1-km UH01 SSPFs were small and not statistically

significant (Fig. 9c,d). The 3-kmUH25 SSPFs benefited

the most from filtering, especially at large scales, since

both the 3-km (compared to the 1-km) and UH25

(compared to UH01) forecasts preferentially benefited

(Figs. 9c,d).

While the 1-km and UH01 SSPFs exhibited less need

for supplementary environmental information, the in-

clusion of this environmental information in the 3-km

SSPFs closed the skill gap between the 1-km and 3-km

UH01 SSPFs (cf. Figs. 5 and 9). Specifically, STP-filtered

3-kmUH01 SSPFs possessedmore similar FSSs (Fig. 9a)

and AUCs (Fig. 9b) to 1-km UH01 SSPFs compared to

unfiltered SSPFs. In fact, the filtered 1-km UH01 SSPFs

possessed statistically significant FSS differences to the

filtered 3-km UH01 SSPFs only at scales # 140km; FSS

differences between these two filtered sets of SSPFs

were not statistically significant at scales . 140 km (FSS

differences between filtered 3-km UH01 SSPFs and

unfiltered 1-km UH01 SSPFs were not statistically

significant at any length scale). This was not true

for the UH25 SSPFs; that is, the filtered 1-km UH25

SSPFs produced statistically significant improvements

in FSS over the filtered 3-km UH25 SSPFs across all

length scales (cf. Figs. 5, 9a), although ROCAUCs did

not possess statistically significant differences (cf.

Figs. 7, 9b).

Together, these results highlight the benefits of fil-

tering UH25 andUH01 SSPFs from 3-kmCAMs, as was

done in Gallo et al. (2018; 2019), to improve the skill of

next-day tornado forecasts. Assuming the availability

of both UH25 and UH01 diagnostics in contemporary

FIG. 6. Attributes diagrams for 3-km UH25, 3-km UH01, 1-km UH25, and 1-km UH01 tornado SSPFs with s of

(a) 60, (b) 120, (c) 180, and (d) 240 km using the UH threshold that produces an SSR bias of 1. The ‘‘x’’ markers

denote where the number of SSPF grid boxes within the forecast probability bin is less than 100.
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3-km CAMs, tornado SSPFs should incorporate UH01

with STP information to produce tornado SSPFs that are

potentially competitive with tornado SSPFs derived

from 1-km CAMs.

d. Daily variations in UH01 SSPF skill

When aggregated across all 497 cases, the 1-kmUH01

SSPFs outperformed the 3-km UH01 SSPFs, especially

at larger scales (e.g., Fig. 5). To examine if these ag-

gregate statistics produced noticeable improvements in

daily UH01 SSPF skill, the FSS was computed in-

dividually for the 497 SSPFs for the 120-km length scale.

For this analysis, we removed days where no tornado

OSRs occurred and no SSRs were present in either of

the 1- and 3-km forecasts (the FSSwould be undefined in

this case); this occurred in 34 SSPFs. The remaining 463

forecast pairs were used to compute daily FSS differ-

ences between the 1-km UH01 and 3-km UH01 SSPFs.

The 202 forecast days (41% of forecasts) had UH01

SSPF FSS differences , 60.05, or essentially no differ-

ence in skill between the 1- and 3-km UH01 SSPFs

(Fig. 10). SSPFs within these bins either produced sim-

ilar SSPFs or were events where no tornado OSRs oc-

curred (FSSs will be zero for both sets of forecasts if no

OSRs occurred). Of the 261 SSPFs that possessed FSS

differences . 60.05, the 1-km UH01 SSPFs were more

skillful 63% of the time (163 forecasts). The largest FSS

differences occurred preferentially in favor of the 1-km

UH01 SSPFs. For example,;70% of UH01 SSPFs with

FSS differences . 60.3 were associated with increased

skill of the 1-km UH01 SSPFs (Fig. 10). In other words,

when the difference in skill between the 3- and 1-km

SSPFs was large, the 1-km SSPFs were more likely to be

superior, with the 3-km SSPFs only producing more

skillful forecasts in a small fraction of cases. At scales

larger than 120km, where the aggregate FSS differences

were largest, the distributions of daily FSS differences

were similar to those at s 5 120 km. The daily FSS dif-

ferences suggest that not all forecasts benefit equally

from 1-km Dx, and in some cases, forecast skill was re-

duced in the 1-km forecasts compared to the 3-km

forecasts. Work is ongoing to understand these varia-

tions in forecast skill as a function of Dx, as the benefits

of reducing Dx from 3 to 1 km may occur in specific

environmental situations. While 1-km UH01 SSPFs are

more likely to produce larger daily FSS values than 3-km

UH01 SSPFs, future work should evaluate if these ob-

jective differences translate into subjective differences

that would be apparent to forecasters.

4. Verification of all-hazard SSPFs at 3- and
1-km Dx

The 1-km SSPFs evaluated in section 3 provided

statistically significant improvements in forecast skill

compared to the 3-km SSPFs when predicting the loca-

tions of tornadoes (and tornado warnings). Yet, pre-

vious studies have noted that 1-km Dx did not improve

next-day severe weather forecasts of all severe phe-

nomena (i.e., tornadoes, large hail, or strong wind gusts),

FIG. 7. Area under the relative operating characteristic curve as a function of s for 3-km

UH25, 3-km UH01, 1-km UH25, and 1-km UH01 tornado SSPFs for the UH threshold that

produced an SSR bias of 1 (Table 4).
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both in subjective evaluations (e.g., Kain et al. 2008;

Clark et al. 2012) and when verifying UH25 SSPFs (e.g.,

Loken et al. 2017). To assess if the present 1-km SSPFs

produce more skillful all-severe hazard guidance than

the 3-km SSPFs, we produced 3- and 1-km UH25 and

UH01 SSPFs with adjusted thresholds based on the

number of all-severe OSRs (27 445). The 3-km UH25,

3-km UH01, 1-km UH25, and 1-km UH01 thresholds

that produced an SSR bias of 1 were 53.57, 4.715, 322.25,

and 34.63m2 s22, respectively. These SSPFs were veri-

fied similarly to tornado reports, but included reports of

hail $ 1 in. in diameter and wind gusts $ 50kt. The

storm reports were mapped to the 80-km grid and ag-

gregated over the 24-h forecast period.

The 1-km UH25 SSPF FSSs and ROC AUCs were

larger at all scales than the 3-km UH25 SSPFs, with

both SSPFs having lmin values between 40 and 60 km

(Fig. 11; Table 4). While FSS differences were small,

they were statistically significant at all scales except

300 km, while ROC AUC differences were statisti-

cally significant at all smoothing length scales. While

the ROC AUC magnitudes and differences between

the 1-km UH25 SSPFs and the 3-km UH25 SSPFs

were similar to those reported in Loken et al. (2017),

they concluded based on similar resampling tests to

those used here that the differences were not statis-

tically significant at any of their UH25 thresholds. To

test the impact of sample size, the FSS and ROCAUC

FIG. 8. (a) As in Fig. 5 and (b) as in Fig. 8, but for 1-km UH01 verified with only tornado

reports (blue) and the combination of tornado reports and warnings (green).
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statistics for the 1-km UH25 and 3-km UH25 SSPFs

were computed for a subset of 58 forecasts between

1 April 2011 and 30 June 2011, corresponding to a

portion of the 63 forecasts included in Loken et al.

(2017). When evaluating this subset, the 1-km UH25

SSPFs possessed larger FSSs and ROC AUCs, with

the ROC AUCs deemed statistically significant for all

scales (not shown), while FSSs were not statistically

significant except for the 300-km scale. Given the

small differences in FSS and ROC AUC between the

1- and 3-km UH25 SSPFs, it may be that these dif-

ferences in skill are not practically significant, even

though statistical significance may exist.

Finally, while the UH01 SSPFs were more skillful

than the UH25 SSPFs at both 1- and 3-km Dx for tor-

nadoes, they were less skillful thanUH25 SSPFs at both

Dx when used as a surrogate for all severe hazards

(Fig. 11). The reduction in FSS when using UH01

compared to UH25 was larger than the reduction in

FSS when going from 1- to 3-km Dx, with skill differ-

ences being statistically significant at all scales for 3-km

Dx and for scales# 200 km for 1-km Dx. In other words,

UH25 was most appropriate to construct all-severe

hazard SSPFs, whereas UH01 was best suited for tor-

nado SSPFs. The degraded skill when using UH01 to

anticipate all-severe hazards is likely due to a weaker

correspondence between the presence of a low-level

mesocyclone, which UH01 is designed to detect, and

hazards such as large hail and intense wind gusts,

FIG. 9. (a) FSS and (b) ROC AUC for 3-km UH25, 3-km UH01, 1-km UH25 and 1-km UH01 STP-filtered SSPFs, along with (c) FSS

and (d) ROC AUC differences between STP-filtered and unfiltered SSPFs (FSSs and ROC AUCs for unfiltered FSSs are found

in Figs. 5 and 8, respectively). The 3- and 1-km UH thresholds were reduced as described in section 3c to produce STP-filtered SSR

biases of 1.

FIG. 10. Histogram of daily 1-km UH01 minus 3-km UH01 SSPF

FSS differences for s 5 120 km.
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compared to the more robust relationship between

these hazards and the presence of a midlevel mesocy-

clone (i.e., UH25).

5. Summary

To assess the benefits of finer Dx on next-day fore-

casts of severe weather hazards such as tornadoes,

WRF-ARW forecasts were produced for 497 high-

impact severe weather events over the CONUS using

3- and 1-km Dx. For each forecast hour from 13 to 36

(i.e., 1200–1200 UTC), diagnostics related to low-level

(UH01, UH03, RVORT1, andRVORT0.5) andmidlevel

rotation (UH25) were used as surrogates for the oc-

currence of a tornado in the 3- and 1-km output.

Thresholds were applied to make decisions on where

tornadoes would occur on a given forecast day, with

thresholds chosen based on the total number of tor-

nado OSRs that occurred during the 497 forecasts. The

locations where the surrogate diagnostics exceeded the

threshold were upscaled to an 80-km grid, aggregated

over a 24-h forecast period, and smoothed to produce

SSPFs for tornadoes. SSPFs were verified against both

observed tornado reports and NWS tornado warnings

using gridscale and scale-dependent metrics. Addi-

tionally, SSPFs of all-severe hazards were created and

FIG. 11. As in Fig. 9, but for 3-kmUH25, 3-km UH01, 1-kmUH25, and 1-kmUH01 SSPFs

verified with all-severe OSRs. The threshold for each diagnostic, provided in the text, was

chosen to produce the same number of SSRs as the total number of all severe OSRs.
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verified against all observed severe weather reports.

The primary conclusions are summarized below:

d The 1-km tornado SSPFs were more skillful than the

3-km tornado SSPFs for the five diagnostics examined

in this work, with statistically significant differences in

skill occurring at all scales. Among the five diagnos-

tics, UH01 produced the most skillful next-day tor-

nado SSPFs at both 3- and 1-km Dx, possessing larger

FSSs, better reliability, and larger ROC AUCs than

3-km tornado SSPFs. The superiority of UH01 among

the five diagnostics was partly due to its ability to

detect tornadic convection in presumably different

environmental regimes. While the 1-km UH01 tor-

nado SSPFs were the most skillful, their minimum

useful scale was ;110 km, necessitating smoothing to

produce useful forecast guidance.
d The 3-km UH01 tornado SSPFs were improved by

filtering the binary SSRs by removing SSRs where the

STP was less than 1.0, while the 1-km UH01 tornado

SSPFs did not benefit as greatly. The filtered 3-km

UH01 SSPFs were of similar quality to the unfiltered

1-km UH01 SSPFs, with the differences in the filtered

3-km UH01 SSPFs and the unfiltered 1-km UH01

SSPFs not statistically significant (the filtered 1-km

UH01 SSPFs were statistically better than the fil-

tered 3-km UH01 SSPFs at small scales, but not at

large scales).
d Using tornado warnings may be a viable supplement

to tornado reports when verifying forecasts of low-

level rotation in next-day CAM forecasts. SSPFs were

more skillful when verified with a combined tornado

report and warning verification dataset, confirming

that 1- and 3-km CAMs can better capture the

occurrence of intense low-level rotation events than

the occurrence of a tornado.
d The 1-km UH25 SSPFs were more skillful than 3-km

UH25 SSPFs at predicting all severe hazards, with

statistically significant differences in FSS and ROC

AUC. While the UH01 diagnostic was the best

discriminator between tornadic and nontornadic

events, UH01 had decreased skill relative to UH25

at both 3- and 1-km Dx when forecasting all severe

hazards.

6. Discussion

While previous studies of convective storm forecasts

(e.g., Johnson et al. 2013; Loken et al. 2017) revealed

little sensitivity of forecast skill to Dx, the current work

demonstrates that finerDxmay be beneficial for forecast

applications such as identifying tornadic convection. We

suspect that the present focus on phenomena such as

low-level mesocyclones, which have smaller spatial

scales than midlevel mesocyclones, leads to a larger skill

gap between the 3- and 1-km forecasts. This is partly

supported by the large scaling factor for UH01 com-

pared to UH25, associated with the smaller-scale of

low-level mesocyclonic rotation (Table 3). Thus, the

biggest benefit of 1-km CAMs may occur for applica-

tions where forecasts of small-scale convective processes

are insufficiently resolved in 3–4-km CAMs. While this

added discrimination is promising, simple postprocess-

ing methods, such as combining STP with UH01, may

reduce most of the skill gap between 3- and 1-km next-

day forecasts of tornadoes. It remains to be seen

whether CAM forecasts with Dx , 1 km further im-

prove the ability to discriminate tornadic convection to

the point where postprocessed 3-km CAM forecasts

cannot compete.

The largest differences between the 3- and 1-km tor-

nado SSPFs occurred on scales between 150 and 300 km.

We hypothesize that the peak in 3- and 1-km skill dif-

ferences on the mesoscale exists since the minimum

scales at which CAMs can accurately predict tornadic

environments also exists on the mesoscale. Given that

storm-scale processes that lead to tornadogenesis are not

predictable within the forecast lead time range consid-

ered here, producing accurate next-day tornado forecasts

with present-day CAMs requires well-predicted larger-

scale tornadic environments, in addition to accuracy in

storm locations. Assuming 3- and 1-km forecasts

predict the mesoscale environment with similar skill

and have similar skill at predicting storm locations,4

the 1-km forecasts benefit by being better able to

generate low-level mesocyclones and mesovortices in

tornadic environments, with magnitudes distinct from

those in nontornadic environments. In other words,

while the generation of the low-level rotation in se-

vere convection is not intrinsically predictable at next-

day lead times, the prediction of intense low-level

rotation benefits from the enhanced predictability of

the larger-scale environment, as well as the capability

to generate intense vertical vorticity on the 1-km grid.

Evidence of this exists when filtering by STP, which

improved the 3-km SSPFs moreso than the 1-km

SSPFs, revealing deficiencies in the ability of 3-km

forecasts to discriminate between events and non-

events that were partially remedied by supplementing

forecasts with accurate mesoscale environmental

information.

4 Subjective comparisons of many of the 3- and 1-km forecasts

reveal similar forecasts of storm placement, with timing errors

eliminated by producing 24-hour SSPFs.
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Even though the 1-km tornado SSPFs were more

skillful than 3-km tornado SSPFs, the tornado SSPFs

examined here remain insufficiently skillful to provide

detailed guidance on scales below the mesoscale (i.e.,

FSSs are ,0.5 for scales , ;100 km). As discussed in

Roberts and Lean (2008), smoothing finescale NWP

output to improve forecast reliability may be detri-

mental to the value of the forecast products, reducing

the sharpness of the probabilities generated and ulti-

mately the practical benefit of added resolution. It is

not obvious whether forecasters would find value in

smoothed tornado SSPFs, although smoothed all-severe

hazard guidance on length scales of 120–160km has

been tested and deemed useful in operational forecasting

environments (e.g., Clark et al. 2012). Incorporating ini-

tial condition and model uncertainty as part of a CAM

ensemble will improve the SSPFs, allowing for in-

formation to be presented on smaller scales (e.g.,

Sobash et al. 2016).

Finally, the most skillful diagnostics for extracting

CAM-based severe hazard guidance appear to be UH25

and UH01, the former being used as a surrogate for all

severe weather hazards, while the latter being used as a

surrogate for tornadoes. Given the growing volume of

diagnostics emanating from CAM ensembles, it is rec-

ommended that UH25 and UH01 be given priority over

others (e.g., UH03, RVORT1, and RVORT0.5) when

considering which diagnostics forecasters should inter-

rogate or should be included in CAM output. While the

UH25 and UH01 thresholds used here may be useful

as a starting point when building CAM tornado guid-

ance, the thresholds are sensitive to not onlyDx, but also
vertical grid spacing, physics parameterizations, and

smoothing choices. Future work should consider these

factors when optimizing CAM tornado guidance skill

using surrogates, and should consider the usage of ma-

chine learning techniques to blend multiple surrogates

and environmental information into a skillful, reliable,

postprocessing system for environmental hazards such

as tornadoes (e.g., Gagne et al. 2017).
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